Serotonin the happy hormone act as a growth factor for the stem cells in the fetal human brain that determine brain size During the evolutionary journey, the size of the brain increased, especially in a particular part called the neocortex. The neocortex enables us to speak, dream and think. In the search of the causes underlying neocortex expansion, researchers at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, together with colleagues at the University Hospital Carl Gustav Carus Dresden, identified a number of molecular players. These players typically act cell-intrinsically in the so-called basal progenitors, the stem cells in the developing neocortex with a pivotal role in its expansion. The researchers now report an additional, novel role of the happiness neurotransmitter serotonin which is known to function in the brain to mediate satisfaction, self-confidence and optimism – to act cell-extrinsically as a growth factor for basal progenitors(BPs) in the developing human, but not mouse, neocortex (Ncx). Due to this new function, placenta-derived serotonin likely contributed to the evolutionary expansion of the human neocortex. The team of Wieland Huttner at the Max Planck Institute of Molecular Cell Biology and Genetics, who is one of the institute’s founding directors, has investigated the cause of the evolutionary expansion of the human neocortex in many studies. In a new study from his lab focuses on the role of the neurotransmitter serotonin, the happiness neurotransmitter, because it transmits messages between nerve cells that contribute to well-being and happiness, for a potential role in brain development during in the developing embryo. In humans and mice the placenta produces serotonin, which then reaches the brain via the blood circulation, however, the function of this placenta-derived serotonin in the developing brain has been unknown. The findings of the study has been published in the Cell Press journal Neuron, their study revealed that the serotonin receptor HTR2A was expressed in fetal human, but not embryonic mouse, neocortex (Ncx). Serotonin needs to bind to this receptor in order to activate downstream signaling. To explore if this receptor could be one of the keys to the question of why humans have a bigger brain.” The researchers induced the production of the HTR2A receptor in embryonic mouse neocortex, and found that serotonin, by activating this receptor, caused a chain of reactions that resulted in the production of more basal progenitors in the developing brain. More basal progenitors can then increase the production of cortical neurons, which paves the way to a bigger brain. Conversely, CRISPR/Cas9-mediated knockout of endogenous HTR2A in embryonic ferret Ncx reduces BP proliferation. Pharmacological activation of endogenous HTR2A in fetal human Ncx ex vivo increases BP proliferation via HER2/ERK signaling. Hence, 5-HT emerges as an important extrinsic pro-proliferative signal for BPs, which may have contributed to evolutionary Ncx expansion. Significance for brain development and evolution According to Wieland Huttner, supervisor of the study, "the present study uncovers a novel role of serotonin as a growth factor for basal progenitors in highly developed brains, notably humans and implicates serotonin in the expansion of the neocortex during development and human evolution". He continues: “Abnormal signaling of serotonin and a disturbed expression or mutation of its receptor HTR2A have been observed in various neurodevelopmental and psychiatric disorders, such as Down syndrome, attention deficit hyperactivity disorder and autism. Our findings may help explain how malfunctions of serotonin and its receptor during fetal brain development can lead to congenital disorders and may suggest novel approaches for therapeutic avenues.” Story Source:
Lei Xing, Nereo Kalebic, Takashi Namba, Samir Vaid, Pauline Wimberger, Wieland B. Huttner. Serotonin Receptor 2A Activation Promotes Evolutionarily Relevant Basal Progenitor Proliferation in the Developing Neocortex. Neuron, 2020; DOI: 10.1016/j.neuron.2020.09.034
2 Comments
This post is written specially keeping it consistent to the C.B.S.E curriculum for class XII. Nevertheless students from other boards can benefit from it too :)
Sexual reproduction in flowering plants (angiosperms) are carried out with the help of sexual organelles of the plant, i.e Flowers.Angiosperms: Angiosperms (Gr. Angios: Covered, Spermae: seed) are plants that have their seeds enclosed in a ovule inside the ovary of their flowers.
There is a huge diversity among flowers of the angiosperms but all flowers have these structures:
The ovary, which may contain one or multiple ovules, may be placed above other flower parts (referred to as superior); or it may be placed below the other flower parts (referred to as inferior).
Structure of Stamen, Anther, Pollen Sac/Microsporangium and Pollen Grain in Plants! (a) The Stamen: Stamen in a flower consists of two parts, the long narrow stalk like filament and upper broader knob-like bi-lobed anther (Fig. 2 A). The proximal end of the filament is attached to the thalamus or petal of the flower. The number and length of stamens vary in different species. b) Structure of anther: A typical angiosperm anther is bilobed with each lobe having two theca, i.e they are bithecous or dithecous anther is made up of two anther lobes, which are connected by a strip of sterile part called connective. The anther is a four-sided (tetragonal) structure consisting of four elongated cavities or pollen sacs (microsporangia) the four microsporangia are located at the corners, two in each lobe. The microsporangia develop further and become pollen sacs in which pollen grains are produced.(c) Structure of microsporangium In a transverse section, a typical microsporangium appears circular in outline, consisting of two parts, microsporangial wall and sporogenous tissue. i) Microsporangial Wall: Includes the epidermis, endothecium, middle layers and the tapetum. The outer three wall layers perform the function of protection and help in dehiscence of anther to release the pollen. The innermost wall layer is the tapetum, its cells have dense cytoplasm, become large, multinucleate and are specialized in nourishing the developing pollen grains.
Functions of Tapetum
It fills the interior of the microsporangium, all the cells are simmilar and called sporogenous cells. Sporogenous cells devide regularly to from the diploid microspore mother cells. The microspore mother cell devides to form pollen grains. M icrosporogenesis : As the anther develops, the cells of the sporogenous tissue is capable of giving rise to a microspore tetrad. Each one is a potential pollen or microspore mother cell. The process of formation of microspores from a pollen mother cell (PMC) through meiosis is called microsporogenesis. The microspores, as they are formed, are arranged in a cluster of four cells–the microspore tetradmeiotic divisions to form microspore tetrads.
Types of microspore tetrads
As the anthers mature and dehydrate, the wall of the microspore mother cell degenerates and the microspores dissociate from each other and develop into pollen grains. Inside each microsporangium several thousands of microspores or pollen grains are formed that are released with the dehiscence of anther.
Pollen grain:
Pollen grains are male reproductive propagule or young male gametophyte which is formed in the anther and is meant for reaching the female reproductive organ through a pollinating agent. Pollen grains are generally spherical measuring about 25-50 micrometers in diameter. The pollen grains are coverd by a two-layered wall called sporoderm. The two layers of sporoderm are inner intine and outer exine. 1. Intine: It is the inner wall of the pollen grain and is a thin and continuous layer made up of cellulose and pectin. Some enzymatic proteins also occour in the intine. 2. Exine: The exine is the hard outer layer made up of sporopollenin which is one of the most resistant organic material known. It can withstand high temperatures and strong acids and alkali. No enzyme that degrades sporopollenin is so far known. Pollen grains where sporopollenin is absent can be easily identified by the presence of prominent apertures called germ pores. The exine surface may be smooth, pitted, reticulate, spiny, warty etc, the exine surface sculpting are specific for each type of pollen grain. Pollen grains are also well preserved as fossils because of the presence of sporopollenin, and thus are helpful in studying the evolutionary history of the plant. The cytoplasm of a mature pollen grain is surrounded by a plasma membrane and contains two cells, the vegetative cell and generative cell. The vegetative cell is bigger, has abundant food reserve and a large irregularly shaped nucleus. The generative cell is small and floats in the cytoplasm of the vegetative cell. It is spindle shaped with dense cytoplasm and a nucleus. In over 60 per cent of angiosperms, pollen grains of a microsporeare shed at this 2-celled stage. In the remaining species, the pollen grain generative cell divides mitotically to give rise to the two male gametes before pollen grains are shed (3-celled stage). Pollen grains of many species cause severe allergies and bronchial afflictions in some people often leading to chronic respiratory disorders – asthma, bronchitis, etc. However they are rich in neutrients and thus often consumed as food suppliment.
The Pistil, Megasporangium (ovule) and Embryo sac
The female reproductive parts of the flower are knwon as carpels, and are collectively called as gynoecium. Gynoecium may consist of a single pistil (monocarpellary) or may have more than one pistil (multicarpellary). When there are more than one carpel the pistils may be fused together (syncarpous) or may be free (apocarpous). Each pistil has three parts, the stigma, style and ovary. The stigma serves as a landing platform for pollen grains. The style is the elongated slender part beneath the stigma. The basal bulged part of the pistil is the ovary. Inside the ovary is the ovarian cavity (locule). The placenta is located inside the ovarian cavity.
Structure of a Megasporangium (Ovule)
The ovule is a small structure attached to the placenta by means of a stalk called funicle. The body of the ovule fuses with funicle in the region called hilum. Thus, hilum represents the junction between ovule and funicle. Each ovule has one or two protective envelopes called integuments. Integuments encircle the nucellus except at the tip where a small opening called the micropyle is organised. Opposite the micropylar end, is the chalaza, representing the basal part of the ovule. The main body of the ovule is composed of parenchymatous mass called nucellus. Cells of the nucellus has abundant reserve of food. Located in the nucellus is the embryo sac or female gametophyte. An ovule generally has a single embryo sac formed from a megaspore.
Megasporogenesis
It is the process of formation of haploid megaspore from the diploid megaspore mother cell (MMC). Usually a single MMC differentiates in the micropylar region. It is a large cell containing dense cytoplasm and a prominent nucleus. The MMC undergoes meiotic division. which results in the production of four haploid megaspores, arranged generally in the form of a linear tetrad.
Female gametophyte or Embryo sac: Only one of the megaspores is functional while the other three degenerate. The functional megaspore develops into the female gametophyte (embryo sac).
Pollination
Pollination is the process of transferring pollen from the stamens to the stigmatic surface in angiosperms or the micropyle region of the ovule in gymnosperms. Depending on the source of pollen, pollination can be divided into three types.
Pollination mechanisms
Pollen transfer can be facilitated by the aid of abiotic (wind, water), abiotic (insects, birds, mammals).In some cases, pollen is transferred simply by gravity and the proximity of the anthers to the stigma.
Both wind and water pollinated flowers are not very colourful and do not produce nectar. 3. Zoophily It is a mode of pollination in which the biotic agents bring about pollination in flowering plants. Zoophily has several subtypes eg. Entomophily (by insects) malacophily (by snails ) chiropterophily (by Bats), ornithophilly (by birds eg. Humming bird), myrmecophily (by ants), anthrophily (by Humans).
Flower traits associated with different pollination agents
Advantages and Disadvantages of Cross Pollination Advantages 1. A number of plants are self-sterile, that is, the pollen grains cannot complete growth on the stigma of the same flower due to mutual inhibition or incompatibility, e.g., many crucifers, solanaceous plants. Several plants are pre-potent, that is, pollen grains of another flower germinate more readily and rapidly over the stigma than the pollen grains of the same flower, e.g., Grape, Apple. Such plants of economic interest give higher yield only if their biotic pollinators like bees are available along-with plants of different varieties or descent 2. Cross pollination introduces genetic re-combinations and hence variations in the progeny. 3. Cross pollination increases the adaptability of the offspring towards changes in the environment. 4. It makes the organisms better fitted in the struggle for existence. 5. The plants produced through cross pollination are more resistant to diseases. 6. The seeds produced are usually larger and the offspring have characters better than the parents due to the phenomenon of hybrid vigour. 7. New and more useful varieties can be produced through cross pollination. 8. The defective characters of the race are eliminated and replaced by better characters. 9. Yield never falls below an average minimum. Disadvantages 1. It is highly wasteful because plants have to produce a larger number of pollen grains and other accessory structures in order to suit the various pollinating agencies. 2. A factor of chance is always involved in cross .pollination. 3. It is less economical. 4. Some undesirable characters may creep in the race. 5. The very good characters of the race are likely to be spoiled. Outbreeding Devices As continued self-pollination result in inbreeding depression, flowering plants have developed many devices to discourage self- pollination and to encourage cross-pollination.
Artificial hybridisation is one of the major approaches of crop improvement programme. Here only the desired pollen grains are used for pollination and the stigma is protected from contamination (unwanted pollen). This is achieved by emasculation and bagging techniques. Anthers from the flower bud before the anther dehisces using a pair of forceps is necessary. This step is referred to as emasculation.
Ref: NCERT Biology for Class 12
* All Images copyright of respective owners |
AuthorHello! My name is Arunabha Banerjee, and I am the mind behind Biologiks. Leaning new things and teaching biology are my hobbies and passion, it is a continuous journey, and I welcome you all to join with me Archives
June 2024
Categories
All
|